Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(7): 2486-2494, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38362405

ABSTRACT

Macrophages are plastic cells of the immune system that can be broadly classified as having pro-inflammatory (M1-like) or anti-inflammatory (M2-like) phenotypes. M2-like macrophages are often associated with cancers and can promote cancer growth and create an immune-suppressive tumor microenvironment. Repolarizing macrophages from M2-like to M1-like phenotype provides a crucial strategy for anticancer immunotherapy. Imiquimod is an FDA-approved small molecule that can polarize macrophages by activating toll-like receptor 7/8 (TLR 7/8) located inside lysosomes. However, the non-specific inflammation that results from the drug has limited its systemic application. To overcome this issue, we report the use of gold nanoparticle-based bioorthogonal nanozymes for the conversion of an inactive, imiquimod-based prodrug to an active compound for macrophage re-education from anti- to pro-inflammatory phenotypes. The nanozymes were delivered to macrophages through endocytosis, where they uncaged pro-imiquimod in situ. The generation of imiquimod resulted in the expression of pro-inflammatory cytokines. The re-educated M1-like macrophages feature enhanced phagocytosis of cancer cells, leading to efficient macrophage-based tumor cell killing.

2.
Biomaterials ; 302: 122344, 2023 11.
Article in English | MEDLINE | ID: mdl-37857021

ABSTRACT

Intracellular pathogenic bacteria use immune cells as hosts for bacterial replication and reinfection, leading to challenging systemic infections including peritonitis. The spread of multidrug-resistant (MDR) bacteria and the added barrier presented by host cell internalization limit the efficacy of standard antibiotic therapies for treating intracellular infections. We present a non-antibiotic strategy to treat intracellular infections. Antimicrobial phytochemicals were stabilized and delivered by polymer-stabilized biodegradable nanoemulsions (BNEs). BNEs were fabricated using different phytochemicals, with eugenol-loaded BNEs (E-BNEs) affording the best combination of antimicrobial efficacy, macrophage accumulation, and biocompatibility. The positively-charged polymer groups of the E-BNEs bind to the cell surface of macrophages, facilitating the entry of eugenol that then kills the intracellular bacteria without harming the host cells. Confocal imaging and flow cytometry confirmed that this entry occurred mainly via cholesterol-dependent membrane fusion. As eugenol co-localized and interacted with intracellular bacteria, antibacterial efficacy was maintained. E-BNEs reversed the immunosuppressive effects of MRSA on macrophages. Notably, E-BNEs did not elicit resistance selection after multiple exposures of MRSA to sub-therapeutic doses. The E-BNEs were highly effective against a murine model of MRSA-induced peritonitis with better bacterial clearance (99 % bacteria reduction) compared to clinically-employed treatment with vancomycin. Overall, these findings demonstrate the potential of E-BNEs in treating peritonitis and other refractory intracellular infections.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Peritonitis , Mice , Animals , Eugenol/pharmacology , Eugenol/therapeutic use , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Polymers/pharmacology , Peritonitis/drug therapy , Peritonitis/microbiology , Microbial Sensitivity Tests
3.
Mater Horiz ; 10(12): 5500-5507, 2023 11 27.
Article in English | MEDLINE | ID: mdl-37815454

ABSTRACT

Treatment of wound biofilm infections faces challenges from both pathogens and uncontrolled host immune response. Treating both issues through a single vector would provide enhanced wound healing. Here, we report the use of a potent cationic antimicrobial polymer to generate siRNA polyplexes for dual-mode treatment of wound biofilms in vivo. These polyplexes act both as an antibiofilm agent and a delivery vehicle for siRNA for the knockdown of biofilm-associated pro-inflammatory MMP9 in host macrophages. The resulting polyplexes were effective in vitro, eradicating MRSA biofilms and efficiently delivering siRNA to macrophages in vitro with concomitant knockdown of MMP9. These polyplexes were likewise effective in an in vivo murine wound biofilm model, significantly reducing bacterial load in the wound (∼99% bacterial clearance) and reducing MMP9 expression by 80% (qRT-PCR). This combination therapeutic strategy dramatically reduced wound purulence and significantly expedited wound healing. Taken together, these polyplexes provide an effective and translatable strategy for managing biofilm-infected wounds.


Subject(s)
Anti-Infective Agents , Matrix Metalloproteinase 9 , Animals , Mice , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Wound Healing/genetics , Biofilms
4.
J Control Release ; 362: 513-523, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37666301

ABSTRACT

Integration of antimicrobial polymeric nanoparticles into hydrogel materials presents a promising strategy to address multidrug-resistant biofilm infections. Here we report an injectable hydrogel loaded with engineered cationic antimicrobial polymeric nanoparticles (PNPs) for the effective topical treatment of severe wound biofilm infections. The PNPs demonstrated biofilm penetration and disruption, resulting in the eradication of resistant and persister cells that reside within the biofilm. Significantly, PNPs did not elicit resistance development even after multiple exposures to sub-therapeutic doses. In vitro studies showed PNPs significantly reduced prolonged inflammation due to infection and promoted fibroblast migration. These PNPs were then incorporated into Poloxamer 407 (P407) hydrogels and utilized as an inert carrier for PNPs to provide a controlled and sustained topical release of the antimicrobial nanoparticles at the wound area. In vivo studies using a mature (4-day) wound biofilm infection in a murine model mimicking severe human wound infections demonstrated provided 99% bacterial biofilm clearance and significantly enhanced wound healing. Overall, this work demonstrated the efficacy and selectivity of the antimicrobial polymer-loaded hydrogel platform as a topical treatment for difficult-to-treat wound biofilm infections.

5.
Nanoscale ; 15(33): 13595-13602, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37554065

ABSTRACT

Bioorthogonal catalysis mediated by transition metal catalysts (TMCs) provides controlled in situ activation of prodrugs through chemical reactions that do not interfere with cellular bioprocesses. The direct use of 'naked' TMCs in biological environments can have issues of solubility, deactivation, and toxicity. Here, we demonstrate the design and application of a biodegradable nanoemulsion-based scaffold stabilized by a cationic polymer that encapsulates a palladium-based TMC, generating bioorthogonal nanocatalyst "polyzymes". These nanocatalysts enhance the stability and catalytic activity of the TMCs while maintaining excellent mammalian cell biocompatibility. The therapeutic potential of these nanocatalysts was demonstrated through efficient activation of a non-toxic prodrug into an active chemotherapeutic drug, leading to efficient killing of cancer cells.


Subject(s)
Prodrugs , Transition Elements , Animals , Palladium/pharmacology , Prodrugs/pharmacology , Prodrugs/therapeutic use , Catalysis , Mammals
6.
ACS Appl Mater Interfaces ; 15(31): 37205-37213, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37523688

ABSTRACT

Multidrug resistance (MDR) in bacteria is a critical global health challenge that is exacerbated by the ability of bacteria to form biofilms. We report a combination therapy for biofilm infections that integrates silver nanoclusters (AgNCs) into polymeric biodegradable nanoemulsions (BNEs) incorporating eugenol. These Ag-BNEs demonstrated synergistic antimicrobial activity between the AgNCs and the BNEs. Microscopy studies demonstrated that Ag-BNEs penetrated the dense biofilm matrix and effectively disrupted the bacterial membrane. The Ag-BNE vehicle also resulted in more effective silver delivery into the biofilm than AgNCs alone. This combinacional system featured disruptionof biofilms by BNEs and enhanced delivery of AgNCs for synergy to provide highly efficient killing of MDR biofilms.


Subject(s)
Anti-Bacterial Agents , Silver , Anti-Bacterial Agents/pharmacology , Silver/pharmacology , Drug Resistance, Multiple, Bacterial , Polymers/pharmacology , Biofilms , Microbial Sensitivity Tests
7.
Front Neuroanat ; 17: 1094301, 2023.
Article in English | MEDLINE | ID: mdl-36968023

ABSTRACT

Introduction: Diabetes is a global disease, commonly complicated by neuropathy. The spinal cord reacts to diabetes by neuronal apoptosis, microglial activation, and astrocytosis, with a disturbance in neuronal and glial Nuclear factor erythroid 2-related factor/Heme oxygenase-1 (Nrf2/HO-1) and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling. Curcumin, a bioactive natural substance, showed neuroprotective role in many diseases. However, its role in the treatment of the diabetic central neuropathy of spinal cord and the underlying mechanisms still need clarification. The present study tried to evaluate the role of curcumin in diabetes-induced central neuropathy of the spinal cord in rats. Methods: Twenty rats were divided into three groups; group 1: a negative control group; group 2: received streptozotocin (STZ) to induce type I diabetes, and group 3: received STZ + Curcumin (150 mg/kg/day) for eight weeks. The spinal cords were examined for histopathological changes, and immunohistochemical staining for Glia fibrillary acidic protein (GFAP); an astrocyte marker, Ionized calcium-binding adaptor molecule 1 (Iba1), a microglial marker, neuronal nuclear protein (NeuN); a neuronal marker, caspase-3; an apoptosis marker, Nrf2/HO-1, NF-kB, and oxidative stress markers were assessed. Results: Curcumin could improve spinal cord changes, suppress the expression of Iba1, GFAP, caspase-3, and NF-kB, and could increase the expression of NeuN and restore the Nrf2/HO-1 signaling. Discussion: Curcumin could suppress diabetic spinal cord central neuropathy, glial activation, and neuronal apoptosis with the regulation of Nrf2/HO-1 and NF-kB signaling.

8.
Chem Sci ; 13(41): 12071-12077, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36349111

ABSTRACT

Bioorthogonal catalysis mediated by transition metal catalysts (TMCs) presents a versatile tool for in situ generation of diagnostic and therapeutic agents. The use of 'naked' TMCs in complex media faces numerous obstacles arising from catalyst deactivation and poor water solubility. The integration of TMCs into engineered inorganic scaffolds provides 'nanozymes' with enhanced water solubility and stability, offering potential applications in biomedicine. However, the clinical translation of nanozymes remains challenging due to their side effects including the genotoxicity of heavy metal catalysts and unwanted tissue accumulation of the non-biodegradable nanomaterials used as scaffolds. We report here the creation of an all-natural catalytic "polyzyme", comprised of gelatin-eugenol nanoemulsion engineered to encapsulate catalytically active hemin, a non-toxic iron porphyrin. These polyzymes penetrate biofilms and eradicate mature bacterial biofilms through bioorthogonal activation of a pro-antibiotic, providing a highly biocompatible platform for antimicrobial therapeutics.

9.
Materials (Basel) ; 15(13)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35806637

ABSTRACT

The present work investigated the effect of aging treatment on the microstructure and tensile properties of an Al-2%Cu base alloy containing various additions of Zr and other alloying elements. Aging was carried out at temperatures of 180-300 °C for different aging times at each temperature. The tensile properties indicated that Zr additions improved the strength of the base alloy, especially at high Zr levels at 180 °C. At the 220 °C aging temperature, however, while Zr addition did not have a beneficial effect on the alloy strength, the ductility was found to improve. Zr-Ti combined additions had a significant effect on the microstructure of the base alloy, as the morphology of the α-Al grains transformed into a non-dendritic morphology, and the grain size decreased sharply. These effects were at their maximum at 180 °C and 0.5 wt% Zr addition. Moreover, the Zr-containing alloys aged at higher temperatures, such as 220 °C and 240 °C, maintained a noticeably higher level of strength over the base alloy aged at the same temperatures. Quality index charts based on the tensile test data also reflected an improvement in alloy quality and strength with Zr-Ti combined additions.

10.
J Control Release ; 347: 379-388, 2022 07.
Article in English | MEDLINE | ID: mdl-35550914

ABSTRACT

Wound biofilm infections caused by multidrug-resistant (MDR) bacteria constitute a major threat to public health; acquired resistance combined with resistance associated with the biofilm phenotype makes combatting these infections challenging. Biodegradable polymeric nanoemulsions that encapsulate two hydrophobic antimicrobial agents (eugenol and triclosan) (TE-BNEs) as a strategy to combat chronic wound infections are reported here. The cationic nanoemulsions efficiently penetrate and accumulate in biofilms, synergistically eradicating MDR bacterial biofilms, including persister cells. Notably, the nanoemulsion platform displays excellent biocompatibility and delays emergence of resistance to triclosan. The TE-BNEs are active in an in vivo murine model of mature MDR wound biofilm infections, with 99% bacterial elimination. The efficacy of this system coupled with prevention of emergence of bacterial resistance highlight the potential of this combination platform to treat MDR wound biofilm infections.


Subject(s)
Anti-Infective Agents , Triclosan , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms , Drug Resistance, Multiple, Bacterial , Mice , Microbial Sensitivity Tests , Triclosan/chemistry , Triclosan/pharmacology
11.
Article in English | MEDLINE | ID: mdl-35638721

ABSTRACT

Antibiotic resistance presents a critical threat to public health, necessitating the rapid development of novel antibiotics and an appropriate choice of therapeutics to combat refractory bacterial infections. Here, we report a high-throughput polymer-based sensor platform that rapidly (30 min) profiles mechanisms of antibiotic activity. The sensor array features three fluorophore-conjugated polymers that can detect subtle antibiotic-induced phenotypic changes on bacterial surfaces, generating distinct mechanism-based fluorescence patterns. Notably, discrimination of different generations of antibiotic resistance was achieved with high efficiency. This sensor platform combines trainability, simplicity, and rapid screening into a readily translatable platform.

12.
Mater Horiz ; 8(6): 1776-1782, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34594564

ABSTRACT

Bacterial wound infections are a threat to public health. Although antibiotics currently provide front-line treatments for bacterial infections, the development of drug resistance coupled with the defenses provided through biofilm formation render these infections difficult, if not impossible, to cure. Antimicrobials from natural resources provide unique antimicrobial mechanisms and are generally recognized as safe and sustainable. Herein, an all-natural antimicrobial platform is reported. It is active against bacterial biofilms and accelerates healing of wound biofilm infections in vivo. This antimicrobial platform uses gelatin stabilized by photocrosslinking using riboflavin (vitamin B2) as a photocatalyst, and carvacrol (the primary constituent of oregano oil) as the active antimicrobial. The engineered nanoemulsions demonstrate broad-spectrum antimicrobial activity towards drug-resistant bacterial biofilms and significantly expedite wound healing in an in vivo murine wound biofilm model. The antimicrobial activity, wound healing promotion, and biosafety of these nanoemulsions provide a readily translatable and sustainable strategy for managing wound infections.


Subject(s)
Anti-Infective Agents , Bacterial Infections , Wound Infection , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Infections/drug therapy , Biofilms , Mice , Wound Infection/drug therapy
13.
Molecules ; 26(16)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34443542

ABSTRACT

Biofilm infections are a global public health threat, necessitating new treatment strategies. Biofilm formation also contributes to the development and spread of multidrug-resistant (MDR) bacterial strains. Biofilm-associated chronic infections typically involve colonization by more than one bacterial species. The co-existence of multiple species of bacteria in biofilms exacerbates therapeutic challenges and can render traditional antibiotics ineffective. Polymeric nanoparticles offer alternative antimicrobial approaches to antibiotics, owing to their tunable physico-chemical properties. Here, we report the efficacy of poly(oxanorborneneimide) (PONI)-based antimicrobial polymeric nanoparticles (PNPs) against multi-species bacterial biofilms. PNPs showed good dual-species biofilm penetration profiles as confirmed by confocal laser scanning microscopy. Broad-spectrum antimicrobial activity was observed, with reduction in both bacterial viability and overall biofilm mass. Further, PNPs displayed minimal fibroblast toxicity and high antimicrobial activity in an in vitro co-culture model comprising fibroblast cells and dual-species biofilms of Escherichia coli and Pseudomonas aeruginosa. This study highlights a potential clinical application of the presented polymeric platform.


Subject(s)
Bacteria/metabolism , Biofilms/drug effects , Nanoparticles/chemistry , Polymers/pharmacology , 3T3 Cells , Animals , Biomass , Cell Survival/drug effects , Fibroblasts/cytology , Fibroblasts/drug effects , Mice , Microbial Sensitivity Tests , Microbial Viability/drug effects , Polymers/chemical synthesis , Polymers/chemistry
14.
ACS Appl Mater Interfaces ; 13(34): 40325-40331, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34416106

ABSTRACT

Biofilm infections caused by multidrug-resistant (MDR) bacteria are an urgent global health threat. Incorporation of natural essential oils into biodegradable oil-in-water cross-linked polymeric nanoemulsions (X-NEs) provides effective eradication of MDR bacterial biofilms. The X-NE platform combines the degradability of functionalized poly(lactic acid) polymers with the antimicrobial activity of carvacrol (from oregano oil). These X-NEs exhibited effective penetration and killing of biofilms formed by pathogenic bacteria. Biofilm-fibroblast coculture models demonstrate that X-NEs selectively eliminate bacteria without harming mammalian cells, making them promising candidates for antibiofilm therapeutics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Cymenes/pharmacology , Drug Carriers/chemistry , Emulsions/chemistry , Polyesters/chemistry , Animals , Drug Carriers/toxicity , Drug Resistance, Multiple, Bacterial/drug effects , Emulsions/toxicity , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/physiology , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/physiology , Mice , Microbial Sensitivity Tests , NIH 3T3 Cells , Polyesters/toxicity
15.
ACS Biomater Sci Eng ; 7(5): 1780-1786, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33966379

ABSTRACT

Infections caused by multidrug-resistant (MDR) bacteria present an emerging global health crisis, and the threat is intensified by the involvement of biofilms. Some biofilm infections involve more than one species; this can further challenge treatment using traditional antibiotics. Nanomaterials are being developed as alternative therapeutics to traditional antibiotics; here we report biodegradable polymer-stabilized oil-in-water nanosponges (BNS) and show their activity against dual-species bacterial biofilms. The described engineered nanosponges demonstrated broad-spectrum antimicrobial activity through prevention of dual-species biofilm formation as well as eradication of preformed biofilms. The BNS showed no toxicity against mammalian cells. Together, these data highlight the therapeutic potential of this platform.


Subject(s)
Biofilms , Drug Resistance, Multiple, Bacterial , Animals , Anti-Bacterial Agents/pharmacology , Bacteria , Polymers/pharmacology
16.
Nat Rev Microbiol ; 19(1): 23-36, 2021 01.
Article in English | MEDLINE | ID: mdl-32814862

ABSTRACT

Antibiotic-resistant bacterial infections arising from acquired resistance and/or through biofilm formation necessitate the development of innovative 'outside of the box' therapeutics. Nanomaterial-based therapies are promising tools to combat bacterial infections that are difficult to treat, featuring the capacity to evade existing mechanisms associated with acquired drug resistance. In addition, the unique size and physical properties of nanomaterials give them the capability to target biofilms, overcoming recalcitrant infections. In this Review, we highlight the general mechanisms by which nanomaterials can be used to target bacterial infections associated with acquired antibiotic resistance and biofilms. We emphasize design elements and properties of nanomaterials that can be engineered to enhance potency. Lastly, we present recent progress and remaining challenges for widespread clinical implementation of nanomaterials as antimicrobial therapeutics.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Nanostructures/chemistry , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Bacteria/drug effects , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Biofilms/drug effects , Biofilms/growth & development , Coinfection/drug therapy , Coinfection/microbiology , Drug Carriers/chemistry , Drug Discovery , Humans , Translational Research, Biomedical
SELECTION OF CITATIONS
SEARCH DETAIL
...